import random import time import copy import numpy as np from skimage.restoration import estimate_sigma from .expr import * from .fractdim import * class IFS3(object): """ @brief 1 Variable IFS with R,G,B,A X,Y decomposition """ #height=width=1024 height=width=768 #height=width=512 def __init__(self, nexpr=4, init_sz=1, world=None): self._nexpr = nexpr self._expr = [RpnExpr(sz=init_sz, nvar=1) for _ in range(nexpr)] self._world = world if self._world is None: self._world = self.get_world() self._position = [random.randint(0, self.height-1), random.randint(0, self.width-1)] @classmethod def get_world(cls): return np.zeros((cls.height,cls.width,4), dtype=np.uint8) def raz_world(self): for i in range(self.height): for j in range(self.width): self._world[i][j] = [0,0,0,0] def __str__(self): return ";".join([str(e) for e in self._expr]) def __copy__(self): ret = IFS3(nexpr=self._nexpr, world=self._world) ret._expr = [copy.copy(e) for e in self._expr] #ret._world = copy.deepcopy(self._world) return ret def get_image(self): return self._world def mutation(self, n=1, rand=True): n = 1 if n <= 1 else random.randint(1,n) for _ in range(n): random.choice(self._expr).mutation() def step(self): r,g,b,a = [int(e) for e in self._world[self._position[0]][self._position[1]]] arg = r arg <<= 8 arg += g arg <<= 8 arg += b arg <<= 8 arg += a arg <<=16 arg += self._position[0] arg <<=16 arg += self._position[1] ret = int(random.choice(self._expr).eval(arg)) dr, dg, db, da = r,g,b,a #self._position[1] = (ret & 0xFFFF)%self.width self._position[1] = ((ret & 0xFFFF)*self.width)//0x10000 ret >>= 16 self._position[0] = ((ret & 0xFFFF)*self.height)//0x10000 ret >>= 16 a = ret & 0xFF ret >>= 8 b = ret & 0xFF ret >>= 8 g = ret & 0xFF ret >>= 8 r = ret & 0xFF sa = a/255 outa = (a + da*(1-sa))/255 if outa == 0: ro,go,bo = 0,0,0 else: ro, go, bo = [(c*(a/255)+dc*da*(1-sa))/outa for c, dc in ((r,dr), (g, dg), (b, db))] r,g,b,a = [int(e) for e in (ro,go,bo,outa*255)] self._world[self._position[0]][self._position[1]] = [r,g,b,a] def score(self): start = time.time() colcount = len(np.unique(np.reshape(self._world[:,:,:3], (-1,3)), axis=0)) #sigma = estimate_sigma(self._world, multichannel=True, average_sigmas=True) sigmas = estimate_sigma(self._world[:,:,:3], multichannel=True, average_sigmas=False) scores = [fractal_dimension(self._world[:,:,i]*self._world[:,:,3]/255) for i in range(3)] #alpha score #scores += [fractal_dimension(self._world[:,:,3])] gray = rgb2gray(self._world) graysigma = estimate_sigma(gray) grayscore = fractal_dimension(gray) del(gray) sigmas += [graysigma]*3 sigmas = [0 if np.isnan(sigma) else sigma for sigma in sigmas] scores += [grayscore]*3 sigma = sum(sigmas)/len(sigmas) mod = abs(scores[0]-scores[1]) mod += abs(scores[0]-scores[2]) mod += abs(scores[0]-scores[3]) mod += abs(scores[1]-scores[2]) mod += abs(scores[1]-scores[3]) mod /= 5 score = sum(scores)/len(scores) score += mod if sigma and sigma > 0: score -= sigma/100 colscore = abs(colcount-1024) / 1e5 score -= colscore printscore = lambda arr: '['+(', '.join(['%1.3f' % e for e in arr]))+']' print("colscore %3.3f (%4d colors) scores time %5.2fs" % (colscore, colcount, time.time() - start)) print("SIGMAS : %s SIGMA : %f " % (printscore(sigmas), sigma)) print("SCORES : %s SCORE : %r" % (printscore(scores), score)) return score